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i~~ . nv ln~ pr ~b lem f r  a 1 -~ ss of cyc l ic a l ly  maximal  monot one operators

Phi l~ppe C1~ ment

1. I n t r o d u c t i o n

The ~I i s s  of m aximal  monot one  operators in a Hu bert space p lays an

i m p ~ r t a n t  r - lt ’ in nonl inear  funct ional  analys is  since it can be identified with

the c lass  of generators  of nonl inear  contraction semigroups in a Hilbert space

[1 1. Therefore it is na tura l  to consider corresponding eigenvalue problems f o r

i t  As in the l i nea r  case , the s tudy of such problems is considerably simplified

if a var i a t i on~ l structure is present. In terms of a maximal  monotone operator

A in a Hi lber t  space H , this me ans that  A is the subdi fferent ia l  aq, of a

lower-semi continuous convex function ~ H ~~~~ 
i.e. y aq~( x) 1ff

~(z )  - ~‘(>j > (y, z - x) for all z in H . In this paper , we are concerned with

the problem

( i~ ~ .p(u ) - • I lu ¶
wh ere the norm of u , ~~ is pr e scr ib~H . As I n the l inear  case , we ass ume th a t

() 
~ . Therefore wi thout  loss of general i ty  we - i n  assume that ~ takes  it s

v a l u c s In (0 ,’ J and p (O)  0

It is  kn own I see for ~x am p V  Theorem ~~~. 10 of [Z f l  that  if H Is a real

i n f i n i t e  d i m e n s i on a l  Hu bert sp~v e . i’ ~ C~ (H , F), i s even , bounded from below,

and sa t i s f i e s  th e P a l a l s - Smal e  condit ion for some sphere ( i . e .  there Is an R > 0
t Supp ort ed by the Fond s N at iona l  Suisse do Ia Recherche Scient ifique.
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II
such that  very sequence ( u ) , with l u l  = R , alo ng which (e (u~~I iS

bounded and q~’(u ) - (q”( u ) ,  u ) u  converges to 0, wh ere ~ ‘( u) denotes the

Fr~chet deriv ative of ~ at u , possesses a convergent subsequence , the n the

equation p ’(u) = pu , ui R, has inf ini te ly  many dis t inct  pairs of solut ions .

In our case , we prove that if the effective domain of ~~, D(q~) : fx c H i q , ( x )  < ~
Is dense in H , ~ is even and the condition: ( x c  Hiq ’(x ) < )~~} is compact for

all X > 0, is satisfied , then Equation (i) possesses infini tely many distinct

pairs of solutions.

We also consider a “dual” problem, where the existence of solutions of

(Ii) (a~) 1 (v) vv, l v i  = R > 0

is proved , in this case the same comp actness condition on ~o as in the first

problem is employed but instead of requiring that D(q ’) is dense in H, we

assume that  p satisfie s a coercivity condition. The same technique is used to

prove the existence of positive solutions when the Hu bert space is equipped with

a cone P and D(q’) is dense in P .  We conclude with a simpl e application to

a second-order nonlinear elliptic partial different ial  equation. Further appl ic a-

tions can be obtained by using known result s establ i shing the maximal monoton-

icity of specific operators.

Concerning the proofs , the eigenvalue problem for the Yosida approximation

of q’ (o r q,~ the conj ugate function of q~) is studied first .  Here we can use

the techniques developed initially by Lyusternik , Schnirelm ann [3], and

Kr asn ose l ski  [4 ]. Then we get the results  for ~ by passing to the limit
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employing closedness propert ies of maximal  monotone operators ,  (See ~l ]  ~n :

the refere nces of [1]]. Finally a lower bound on the number of solut ions  is

obtained by using argument s related to those of 141. See also the references

of  1 2 ]

Dif fe ren t  resul ts  concerning eigenvalue problems for maxim al  monot oni

operators can be found in [5], [6] where the existence of solutions is basen on

a result  of Rabinowitz [7] about global branches of solutions emana t ing  from a

b i fu rca t ion  p3lnt which generalizes a previous result of Krasnoselsk i  ( 4 J .  In

our context , it can happen that no bifurcation occurs.

The author would like to express his grat i tude to Professor P. H. R ab in n it z

for h is  suggestions and helpful assistance.

2. Resu lts

Let H be a real infinite dimensional  separable Hilbert  space , wi th  sca l ar

prod uct ( ‘ , ‘)  and norm I’ I

Theorem 1 . Let ~: H [0 , ~ 1 be convex and even , sat isfy i ng:

~( 0) 0 • ~l)

{x c H i qr , (x)  < ~
.) is compact for all \ > 0 ,

D(Q) is dense in H . ( ~l

Then for all R ~ 0. there exists a sequence 
~~~~~~ 

U
k

) F x H . k IN such

t hat :

-3 -
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I i  LI

1 ~~
- (

~i )  
~~ 

U k .  
~k > 0

Cl ~ U p  ( l U , I - I’

Th~~ r em ..~~~ Let e: H -
~~ [0 . ’j  be convex and even ,satisfy ing :

~ l0 )  0 , 0 = a4~(0) . (I)

( X E  H l e ( x )  < \ }  is comp act fo a l l  \ > 0  , (2)

q (x)
u r n  — —-—-

— ~~ xl
x e D (w )

Then for a l l  R ~ 0 . ~fl~~”- exis ts  a sequence ( V k, V
~~ 

c F~~X 14 , k ~ ~J such

that :

a) vkI = P

b) d’ “ k”k ’ V
k 

> 0

) i n f  ~~~Iv k) 
.~ 0

where ~ ( x) :~ sup { (x , y) - ~(y) } is the conjugate function of q’
~~E H

Let P 2 H be a closed , co ive x cone. (In p3rt icular If P fl -P = {o}

P is a cone of ‘ positlve ” function s) .

Tneo’em 3. Let ~‘: H 1O~~”] be convex and satisfy :

-4-



ø ’O) 0 • ( 1)

< is compact for all  \ > 0  . ( 2 j

P. ‘. her e f~~ ’) denotes the clo sure of D(q ’) . ( 3)

ThI n r i l l  P L i . there exis ts  ( p .  U )  C JR X P such that

~ lul ~ R

b ~~ ( u l  - MU ~1 > 0

C) c’ ( u )  inf  q’(v) .

I v I = R

Theorem 4.

Let ~‘: H JR be convex and weakly continuous. Then for all R > 0,

there exis ts  \ > 0, u c H such th at

ni  i u~ - P

b) ~‘~ (u )

c) cp( u) sup 0(V )

I V I ~~R

Re mark.  In the theorems 1 and 2 , the conditions sup 4’(uk ) = o~ and
* kc IN

in! 
~ 

(v
k) 0 imp y that the equations ~io(u) pu , ( u l  — R and (8ç) ( v) -

~ vv
k dfl ” J
I v i  = R possess Inf in i te ly  many pairs of dist inct  solutions. Clearly by the

oddness of ~~ (8 q, 1
) ,  if  (p .  U ) is a solution , then (p , -u) is another one .

Moreover , in t he f i r s t  case , since U
k 

belongs to the domain of 84 ’,  4’(uk ) <~~
hen ce the numb~ r of distinct solutions is in f in i t e .  Simil ar ly ,  in the second case ,

-5-
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0, oth erwise , by def i ni t ion SUP
~

(vk , Y )  - 4 ’(y )~ = 0 . hence o l y ) > .
y c H  -

icr a l l  y c  H . ~ (0) 0 i mp ’ies t h at  V
k c ~l~’(0 ) and the a s sumpt i n r i l , ,  V~, ( ‘

wh ich is impo ssib le  since I Vk I = P > 0 . Therefore the n um b e r  of ‘ i ls t i i ct

so lu t ions  is inf i nite.

~~. Auxiliary lemmas and nDtat ions

Let H a real in fin i t e  d ime asi ona l  separable  Hu bert spsce }‘ - r  P ~ 0

B~ is the ope n ball of radius P . its clo sure  ari d ~t s  b .u n d a r y .

x - x denotes a s trongly convergent  sequence and x - x a w ~- 2:l y con-

vergent sequence. For f C 1(H , JR ) , f ’ ( x) is the Fr~chet d cr iv a t iv o  of at

x . denotes the restriction of f to aB R . X t  is  c a l i c : a -r ~t i c n ~
P

poi nt of i j  if f ’ (x )  - ( f (x ) ,  x) P 2 x 0 . a c JR i s  :1 c r l t j c u !  v a l u e  —
R

if a f ( x) for some cri t ical  point x of
R P

For R ° 0, b e JR , if every sequence ( X L  x aB R . a long whi ch

f X  -. b a nd I f ’(x ) - ( f ’ ( x ), x ) R  x I 0 possesses a s t r o n g l y  c~~n”e~g~-n ~

subsequence , we shall  say that satisfies the Pa l a i s -Sm a l e  (P. S. )
R

con di t ion at b I2] .

It is known that the nDti on of genus  ~a u s  fu l  ‘ the ch ar t  c. e r l z a t l L : Di

critical values. Let us recall some facts about the genu s  o~ a s~ t .  1.et

~~(H ) : (A C H - ( 0 ) 1  A closed , symmetric ) . For A ~~( H ) ,  let

y~A) : Inf {n c ~i l  there exists g: A - ~ lR’~ - {o) which is continuous and odd~

with the convention Inf 0 = -
~ ~o ~y(A) Is called the genus of A . [2], [ 9 1 . I t

fol l ows immed ia te ly  from the definit ion that  if ‘y(A) k . B ~ (H )  and

-6- 
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there exis ts  g~ A B con t inuous  and odd , then ~ (B ) > k . In p a r t i c u l a r . Il

A B, y (A)  <
~ y (B ) . We sh al l  use the fact that  if A c  ~~( H ) ,  A comp ac t .

then  y t A) < ‘, and if A ~~( H )  is  hameomorph ic  to a k d i m e n s i o n il sph ~’rr

S’
~~~ by an odd homeornor phism , y (A ) = k . [2], [4 1.

For R > 0 . k ~‘J , we de f ine  : {A 
— 

aB~ IA ( .m~,n c t . sy r: . n. I r l  a

> k } . Clearly d and C . When the context is c l e a r ,

we sha l l  0.-nit the subscript  P . Fin a l ly ,  we recall that  if f: H -- JR is  v r a k l y

con t inuou s  f -> 0. f( x) - 0 if and only if x 0, then c~ :~ sup~ m l  f i x
FC

~Y k >:~ r

sa t i s f i e s :  1) 0 < c~ < ~ aid ii) inf c~ 0 [2], i~ 1-
kc IN

We are n~ w ready to state the first  lemma.

Lemma 1. Let f t  C 1(H , F with 1 f ( x )  - f ’ (y ) I < M i x - y l  for some M > 0

Let P > 0 and b m l  f (v)
Iv I= R

T f f is even , for k c U~l, let bk := inf sup f(x)  arid
xcr

Ck : SUP
R 

in! f(x)
r’c .yk x cr

Assume that f I~3 satisfies the (P . S) condition at b (resp . bk , ck
) . the~

R
b(r esp . bk, ck ) Is a critical value of

R

Remark. This lemma can be deduced from the results of [2], [4].

For the sake of completeness , we sh all give a direct p’oof here .

Proof of Lemma 1

We consider the following associated differential equation :

-7-
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- ~f ’ ( u ) , u iR  ~ u ]  t ~ 0

(3 . 1)

u ( 0 ) = x  H

Since t h .  right hand sid e is local ly Li pschit z , for x H , 13. 1) possesses

a local so lu t ion  on some interval  [0 , t( x) [. By t aking the scaler product of

(~~~ . 1) wi th  u . we get , if  x c

l i d 1  2 -2 2) 
~~

- j u l  - ( f (u . U) - P U

1 u o I 2 R 2

By setting V 1u l 2 we get a li near equation for v , on E0 , t (x ) [ .  v(t)  = P
2

is the un ique  solution , therefore u(t ) remains on 8B
~ 

- But on BB
~

, the

right hand side is globally Lipschitz and by a standard result we get:

1) ~ x aB R, ~ ! u(t , x) solution of (3.1) with f u ( t , x ) 1 2 
=

ii) V t > 0, x -. u( t , x) is continuous , and odd if f is even.

By takin g the scalar product of (3. 1) with ü we get: ( U I 2 
_

~~~~~ f( u(t , x))

since (u , ü )  0 . Therefore f (u( t ) )  is decreasing. Since I u ( t) I = R and

f maps bounded set into bounded sets, f(u(t ) )  is bounded. There exists

a( X ) c JR such that: iii) f(u(t , x)) i a(x)

Consequently ~~
‘
~

- f(u(t , x))  -
~~ 0, as t -‘ ~ . But -~~~~ f(u(t , x))

- l f ’(u )-  f (u) , u ) R 2 u ( 2 
. Hence

iv) I f (u (t , x)) - (f ’(u (t , x)) , u(t , x ) ) R 2 u(t , x) I- . 0 as t .

-8-
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4
~~~~ c,~n s i n er  b (r e sp .  bk, c

k
) . These quant i t ies  are finite since I is

Li ~u:. ~o ii on u~ W~ c l a i m  t h a t  b ( resp  b~, ck
) is a cr i t ical  value if for

- a , t h c ~ c:~i st s  x c dB such t h a t  b < f ( u ( t , x )) K b ~ c for a l l
C P —

t ‘0 . 1 . - o H , i f  i t  is the cas*c , for each n c  IN , we can find x ~ ~B andn R
t > 0 , s u c h  ~h n t  b < f i u ( t  , x i ) < b and I f ’ ( u ( t  , x I )  - ( f ’ ( u ( t  , x ) j

u ( t , x i i R ~~ u ( t . x ) ~ < 1~ Then if y u( t , X ) ,  y aB s . f ( y ) ~ b and

j t ’ i y )  - t f i y  , , y ) R ~~ V (  -
~~ 0 - By ( P S )  at b , there e x i s t s  a subsequence

y — v .an~ c lr o~r ly y is a cri t ical  point of 
~

1 8B and b - 1(y) is a cr i t ica l
R

value.

First consider  the case of b = inf f(v) . By defini t ion , for each c > 0

ther o ex i s t s  x ~B such that  f(x ; < b + c . But f (u ( t . x ) ) < f(x ) < b cR c —  £ — C —

for all t > 0 and f (u( t , x ) )  > b since u( t , x~
) c aB R . This concludes the in f

Case .

Now let bk = ~~ sup f(x) . For each C > 0, there exists r’ €

FE~~~ x t r

suc h tha t  sup 1(x) < b~ + £ . Let h
~

(x) := u(t , x) . Since h t: aB~ -
~ aB~ is con-

x c V  q
t inu ous and oc~i , h~

(r ~ - There fore for all  t > 0, b k < max f (x)  -

xch t ( r )
Thus there exists x(c , t) € r such that  < f(u( t , x( C , t ) ) )  . Now choose a

sequeace t ~ and define x :- x(c , t~ ) . Since r c is compact , there

ex is ts  x ~ r such that  x — x , t . We shall again denote this
£ £ C~~ri

j 
C

subs~ r iueice by x ,, 
~ 

aid t . For each t > 0, we have u( t , x(c , t ) )  —

u(t , x )  . Hence f (u( t , x( C , t n ) ) ) f (u(t , x e)) . We have

‘21 
_ _ _ _ _ _ _  _ _ _ _ _ _  _______—

~

-- _ 
~~~~--- - - 4

~~~~~~rn—~~~j$r -
~~~~~~~

--
~~~~



bk < f (u( t , x( C , t ))) < f (u( t , x(c , t~ )~ ) for t
n > t . There fore

h < f ( u( t , x )) < f ( x  ) for each t > 0 - But X C U , t h u s  fi x b.k —  C — C ~ C-

Thus , bk < ~( u (t , X
C

) )  < b~ r C for all t > 0, and we are done. The

case of :‘  s u p  1 . 1 f( xl fol lows from the p r r ( ( ~~~flg one , by obs ’ r ’:in~
l t ’ Y L. x e l ~’

that  -f  s~ t i s f i r - s t’he a s sumpt ions  of the pr ece d ing cas . ..

Now let  us re - a l l  some d e f i n i t i o n s  and r e s u l t s  db out  convex t u n c t i o n 3

in a H u b er t  space. For references, see for example [1]. Let C: H 10 , -‘ I

convex . P -w r r  s€ ’mi con t inuous  wi th  ~ (0 I) . Then A i~o , th~ su b d i f f e r i -~t i i i

of ~ is ~ -~~ ( s ince  0 a~ ( 0) , ,  ma x im& mon otone and - ( I  * \A ( iS

a cont ract ion , defi ned on all H f~r ~ > 0 . A
> : -

~~ (I  - J
A ) is called the

Yosida appr ox i mation of A - We have D(~’) = D( 8q j and m t  D(~ ) Tn t  r~( d c l  -

:~ ln f  {
~4~- I x - y  1 2 q~(y ) ) - .

~ A~ x 2 
~ o(J~ x) is C1(H , 1P) , 0

y c H
- 0 and = . A~ is Llpschitz continuous with constant  —

q’ (X ) 4 q,( x) as x ~ 0 - We shall  use the fact that if lim 99- = c~, th en
lx~xt D( q ’)

(a 0)~ is defined everywhere and maps bounded sets into bounded sets.

The conjugate function of ~~, 4’ (x) : sup {(x ,y )  - o(y)} .  is conve x .
* 

y c H
lower semi continuou s and > 0 , q’ (0)  = 0 and (x ,y )  < ç~,(x) ~ q’ (y) by deft -

* *nition . Al so (x , y) = 4’(x) + q’ ( y )  1 f f  x c 84’ (y) or y E 8~~(x) , since
* - l  * *  1 2 * *

= (8 w) . We have (q ’  ) ~ and if e(x) := l x i  , (\ e  ~

Let us prove th is  last identity. If A is maxima ’ mo noton ” I = (l~ A) 1 
+ (I- i -  A ’) 1

Indeed if x c H , x ~ r~ with ~ = J 1x and ~ = A 1x . IL ~1 c A since

.10-
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A 1 A J 1 . There fore [
~

, 
~

] t A 1 which is maximal monotone. Here ~ E

x A~~~~~ ( I  A~~~~~ (~~~) . Therefore ~ 
(I + A 1) 1 (x ) .  hence

x ( 1 ~ A) 1 x ~ ( I  ~ A ’) 1x - Since d 0 is max imal  moooto .a e , so is  ~i e an

—l — l  — l  _ l  — 1  — 1
I ( I  4 \~i c .”l  - ( I  + ~\~ le) ) . But I - ( I  + \ ( a e )~ = (I ‘~

Hence ‘i~ \~ 
1

( 1  ( \ d ~ ) 1) 1 

- ~ 

(~a )  1 1 ( \ I  ~ l~ 1 But

a[~ e 4- 
~ ] and (XI i~4, ) (~ [\e ~~ 1) = o [(~ e -

~ e )

Therefore (Xe + e )  C b-it q’~~( O ) =  0 and (k e  + e ) ( O )  - 0. thus

= ~~e + ~~
)

Finally let us ~ecal1 some property of convergence. If x t D( 84 ’),  th2n

(
~~el~~(X) ~~ (a4’)~(x) as \ . 0 ( wh e r e  a~ °( x) is the element of ae(x l of minimal

no~m~ and I (a e ) X (x) l < I a 4’ (x) I -

We conclude this section by stating a lemma which will be used la te r .

Lemma 2. Let ~: H — [0 , o~] convex, lower semi continuou s, with ~(0) 0

Let X 0 as n — ~o, and let ( a ~ , x~ ) e lB )< H such that 1) a~ ~~~ a

2) x~~~~~
x 3) aXE D(~) 4) (X ) =  a X xX

Then a) 84~(x) ) ax

b) lim 
~ 

(x
~ 

) exists and is equal to ~(x) -
n—~ n n

Proof of Lemma 2

a) By the monotonicity of 
~~~~

, we have:

(a - ~~ (v), x~ 
- v) > 0 for all v E D( 8~) -

n f l  n n

4

-11-
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Hen:e i ’-: - i~~~,) ° (v), x - v~ ~ 0 for all v t D(8~) . Since 3~~
° is a princip al

s - ct i on ‘~f a , x f l j  a , ) an d  ~rX C 8Ldx, -

b) \ V ’  have

,~~ (X ~~ ) - 

~~~~~ 

(x) “‘ ( L ~~ (x), X
\ 

- x) - £
a n n n n

(X )  - L
X 

(X ~ ‘°k (x~ ), X - X~ ~~ -

n n n n n n

Hence (xl +c < 
~~\ 

(x~ ) < (x) - . But (x) w(x) ~ .~~~, since
n n n n n

x c D(a...). and c , 
~ 

—
~~ 0 since x -~ X. ~ (x ) a x is boundedi n  X - X X  X Xn n n n n

as is ~ (x) -
n

4. Proof of Theorem!

a) Critical values

For R -> 0, k c IN, let 
~k 

:= {“ C aB R Ir E(H), F compact, y(F) > k}

b
k 
:= inf sup ~(x) . We claim that bk < ~~, for each k c IN, and each R >0

rcy k xcr
First observe that for each B > 0, and each k c IN, &B

R 
fl D(4’) contains a k_

dimensional sph9re T
k 

. If not, since x c D(q, ) fl 8B~ , with R ’ > R only if
X E  D(4’) fl 03R~ 

(by the convexity of D(4’) and the fact that 0 E D(4’)), we would

have D(~) C where E
1 is a f-dimensional subspace with I <k - But this

would contradict assumption 3). Now let B > 0, k e IN given. We know

that for c > 0, there exists a k -dimensional sphere r~
1
~ conta ined in

8B
R 

fl D(4’) - Let Ek = span r k . E
k 

is a finite dimensional subspace.

Let the restriction of ~ to Ek - Clearl y D() ) r~~
C and ~ Is continuous

-12-
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- - -

~t each i :o. >: c o n t a i n e d  in the Inter ior of Cony r~ 
-
~~~~ (convex closure ) relative

F~ . i n a i r t i - -~I i r  01 I~~ : OB
R fl (H flv F R +C 

. r~ Is a k - d i mensional  sphere ,

t h - - n ’ f l U S  O’ u~ ~~, ~~ . Sinn t . F~ i s  compi. ’t and  ~ is

co’ . i n u a u ~ on it . su ;~~ ~ j x i  su p ~ ~~x) K i’ , th ~r n f o rr  b
k inf  sup e(x) < ~

I 
~~~ 

F t l~€ y X: F

C ) 
~ 

b~ K 1 
1 .~-s ~m m e — f i a t e l y  t r r n  the de f in i t i on .

F r  P 0 , k F”~, \ ~ 0 . let  b~ in ! sup a ix) Since q’ • 
4’

F(~~~

as \ 0. we have b~ < b~ if ~i < X and b~ < bk, for X > 0 - Therefo re

b L :z s up  b , -~ -c 
- We claim that sup b k . If not, there exists C > 0

- k- IN

such tha t  b~ < C for a l l  \ 0 and k ~ IN - By the definition of b~. there

exis’ s c such that sup +
~~ 

< C for all k c IN; hence
X E F k

x) < C and 
x E r k 

IA 
/k~ 

<c . But I J l/k~d ix _ j
~ 

Al/k x l

> P - xZC —.L., ~ x c F - Trierefore there exists k such that for k > k

r~, iji/k X I > - Let r k be the image of Fk 
by . r

k 
is compact

and symmetric since rk 
is compact, and symmetric and is continuous and

or id. Since 0 q ’ r
k 

for k > k0. Fk E ~ (H) . Since ~~~ is continuous

and odd , y r k ) > y (r k ) > k for k > k
0 

. Let F := {xc HI4’(x) < C and

l x i  > - r is not empty since r’k .: r’ for k > k 0 - I’ is compact by

assumpt ion  2), and symmettic since ~ is even and 0 ç” F by definition; therefore

‘y r’) = k 1 
< - But, for k = max(k 0, k 1) + 1, r’~ C F, hence ‘y( r~.)  <

and -y( r~ ) > k > k 1, a contradiction. Thus s-u p =
cc IN

— 1 3 —

:1
’
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~~~



b) Appro xim ~l t ’ -  s o l u t io ns

2

l e t  R > 0 , k e  IN.  Let \ :~~~~~~~~
— i f  b k > O . a n d X ’ O  arb i t r ary ~~ P H

k
We c- Porn  that for 0 K X ~ \, there exists  u k . I H such ‘h .t

Ri i - P  (4 1 ik . k

c
~~

(U
k k 1 - 

~ k, ‘
U
k, k h , ~ 0 14 .  ~t

~ X Ri k , \
) b k - (4. 3)

Let 0 < \ — - Since C~(H . IR) and is Lipschi tz  con t inuous , by

t he Lemma I we are d ane provided that  satisfies (P. S) at . Let
a BR

X e 8B~ such that cx(x~
) — b~ and Iç,~ ( x )  - (4’k (x ), x~ )R 2 x l  — 0 . We

have 4’~(x) = A
X 

x and x ~~ X
n 

+ X A X x - Therefore (1 - X(A
X

X , X ) R
2

) A X

- (A x x )R
2 

J x — 0 - But 0 < X(A x , x )R
2 

< 1 . We can ex trac t aX n ’ n X n — X (i n —

subsequence, still denoted by x , such that X(A~x . x )R 2 
— ~ € [0,1] -

We claim that ~ < 1. Otherwise J x -
~ 0 since A x is bounded and

(Ax
X ,X )R

~
2 doesn ’t converge to 0 • Then 

~ 
lA X

x J
2

= 
~
(A
~
x
~
,x )  -

~~~ 
-

~~ 

. Hence b~ using the lower semi continuity of ~ (Assump-

tion 2), 0 ~(0) = 
~~~~~~~~~ 

- 

~~lA~
x
~ l 2

J = b~ - -~~ -~ l:~~ ~~~~~~~~~~~~~

a contradiction. Therefore a < 1. Since 4x(x) = j IA ~ x~ I + w ( J ,~ X~~) is

bounded , 9~
(Jxx ) <C and by Assumption 2 , J~ x lies in a compact subset of

H - We extract a subs et~uence still denoted by x , such tha t J
X

X -
~~ z .

Therefore A~ x converges strongly to 

~f~— z and x~ -, (I-a)
1 z . Thus

-14-
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‘S

satisfies (P. S) at b~ . F ina l ly ,  obse rve tha t  in (4. 2) .  
~k ~ 0

fol1o w~ f rom the mo.iotoiy of and the fa c t  that C ( O ) 0

C) L imi t  ~~oce-3ure

Let P > 0 k ~ IN - We claim that there  ex i s t s  X . 0 ~n-~ u

such tha t  U
k X 

— U
k 

• Let 0 K \ < ~ - c~~~(U ~~ ~) b~~~ bk~ 
. Th e r ° f~~~

~~ \~~ ~ 
< b~ and ~ iA

~
u
~ ~I < bk . By Assumption 2) ,  the~e exis ts  a

se~ ur-nce X L 0 and u k c H such that  j
X u k X 

— U k - X J A \ u k ~~ < 2 b ~

i m p l i e s  tha t  \ A X u k ~ 
— 0, hence u

k I~~ U~ 
~ ‘n A 0 U

k . 
U

In p ar t icular  l u k i R -

We shall p ove th at 
~k >. 

is bounded. We alre ady know that 1
~k 

> 0
n • n

Assume th at  there exists a subsequence k 0 such that ~~-‘~ - For
ii i

n . big enough, 
~k 

> 0 . We have for all V £

n .

(

~k,

l

x

_ A
~ 

U
k X 

- 

~k,X 
A k n

v
~ 

U k . 
~~~ 

- 

v) 
~~~ o

by the monotonicity of - Since 
~k

1

\ ~~~ 
V~ U~ 

~ 
Uk X =

n
i J

U
k k 

— U
k~ 

~ A~ v — 0 (A
X 

v is bounded since v D(84’)) Therefore
n~ ~~~~~ n~

we get : 
_____ ____

(U k, U
k 

- v) > 0 for all V D(8~ ) = D(q’) F!

by Assumption 3 - But U
k 

� 0, ~ contradiction.

We know that Uk X~ 
— U

k~ ~~k , X~~ < C , therefore we can extract a

-1 5-
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0 subsoqu enc” , t i l l  a~ - n o t - 1  by \ . such t h t  U - u  • ~~, ~~~~ > 0
k , \ k ~ . \

We can ‘~~1-; L em m a  2 , wi th  ~ ~~, 
~~ 

‘ X 
- U~ 

~ 
. 

( ) b n e r v e

th Ct  ~ U DI ~~I H . Tner e fo .-e we save l U k ! a O ( U
fr

)

Urn  ,
\ 

I u ~ ~ 
Urn  

~k 
— sup b

k bk But in t h e  f i r s t  p a - i  o~ f t h
\ . u ~ a \ .0n -

‘-~~ 3 h v  J th : i t  sup b
k ~ He-ice sup  . u

k
) sup bk ~

k~ IN
we i’~ ::one.

~o . Proof - f  The rn.~~ 2

~ We c l a i m  t h a t  if ~~: H * ~0. ~r J sat is f ies  the hypotheses of Theorem 2,

then  D( 5 .  ) = H , ~~~~‘ is weakly continuou s, ~~(x) 0 if and only if x = 0

~‘. ~(x) 0 i f !  x 0 and o is even. ~++ is convex , even , lower semi con-

t i n u o u s  by ;o ssump ~ion 2 , ~ ÷i~ by Assumption 1, and a~ (8w) ’ is defined

( . vi ry ’A -h er ( - m d  maps bounded sets into bounded sets by Assumption 3. Then

H . ~ is convex lower semi continuous and by Hahn -Banach, weakly

lower semi continuous.  We prove that if x — x, then t i m 4~~( x )  <

By the s u r j e c t lv i t y  of ~~~ there exists  y ~ D(a4 , ) with x i a4~(y ) . Since xn n n n
is bounded , so is y and ~4y) < y(y ) + ( x )  — (x , Y~~ ) < C -

By Assum pt ion 2), y lie s In a compact subset of H , there f:re

Urn (Y r . X -X) : 0 - But ~~ (x 1, ) (Y~~~ X --x ) + ~ (x) , hence t i m ~ (x ) < ~ (x) -

* *Therefore ~ Is weakly continuous. Clearly 
~ 
(0) 0 . Assume q~ ( x) = 0

Then (x , y) -
~ ~y) for all y H, hence x a~(o) , so x 0 by Assumption 1.

* *Clearly ~~ ( 0 )  0 . Assume ~~ (x)  0, then x ~ ô4~(0), hence x 0 .

-l~~_



F l ; ’ ‘- l i v , i t  i s ci ar t h . i t  is even , since ~ 
-. 

( - x )  z sup { (-x . y) - 4 ’(Y) )

* 
y€H

su p  ~ix , y )  - e l - V ) )  sup {( X , y I  - L~(y) ) . (X )
- ‘oH  - y H

( o ; o ~~ , . r o ’ . -  th it  fo r  a l l  \ ~‘ 0 , \e • ~~ s a t i s f i e s  the ass umptions  - f

1 2  *a - c ’  2 .  ~~~~ ~- Ix f  - Ther ef ~ re for a l l  X > 0 , ~ and (ço

(\ e t~~~l ) - - ( \ e + 4 ’~ ar e we l k ly con t inuou s . > o ~ = 0  1ff x - 0 ,

-
~~~~ (x l  a n - i  ix )  0 1ff x 0 . and 

~~~~
, ( e )

~~ 
are even. Therefore,

by a r e s u l t  st a t  in  S e c t i a - C  2 . ck SU~~ mm ~ 
‘ (xl and 

~~
- sup (~

r
~~~k

x (r

satisfy > C~~. c~~> 0 and in! ck 0 - Since A <- ck, Ck SUP
kcIN X>0

s a t i s f i e s  “ 0 and inf 0
k c U’J -

b) We cla i m that  for any R > 0, k c IN and K > 0, there exists 
~k , ~. 

c H

> 0 such that

= R (5. 1)

*

~k (v
k ~ 

= 
~‘k , X ”k , K ( 5 . 2 )

* K

~x (Vk ~ 
= Ck 

. (5 .  3)

First observe that if 
~4’~~k (v

k ~ 
= vk , x Vk, ~ 

for some 
~k ~~c IR

then v k K has to be > 0 . Indeed , 
~k K is > 0 by the monoton icity of (~~*)~

and the fact that (~~~) ‘ ( 0 )  = 0 . It is >0 , since ( c ) ~ (x) = 0 iff x = 0

a rid Vk ~ ~ 0 . Now (5.1) - (5.3) will be proved , if (p satisfies the
8B

R

(P. S) cond ition at c~~, by Lemma 1. Let c 8B~ , such that



:4 -2( ‘, ‘ ( x )  • c ’ > 0  and I ( e ) ‘ ( x ) — ( ( 4 ’  ) ‘ ( x ) ,x ) R  x • 0\ n k K n n n
x ~ • we ‘ -a n ‘x t r , l ’t a subsequer i : ’ v ’ , s t i l l  d e i i o t c ’ ’~ by x • such tha tn P n

*x —
~~ x € H . We c l a i m  th it ~ ) (x ) • (~~ ) ‘  ( x ) ,  at l eas t  for  -a s k i b s e a u -~- , c--n \ n

First ’ P serv e  tha t  - (\ e  + 
~~) ,  he nce ic’ )~ O I ( . ) ) ~~~~

-1 , I , \ ‘2~ x~~ c ’ ( X)  -1+- ~\ ! + ~~~ - S i r n - ’- l i r n  
- 

—— r , ~~~~~ ~ d~~~
l x i — -” j x l

xc D i g ’ - )
bounded sets, into bounded sets. In pa r t i cu l a r  y := (U + ee) x is b urel

But x — K~ € a0(y ). therefo re Q(y ) ‘- ~ 4v ) + ~-~~~~x — ) — (x  — ‘C,’ , vn n a — n n a n n
< (x , Y~ ) < C for some C 

~
‘- 0 - By Assumpt ion 2 ) .  we can extract  s u h se qu r n c - ’~~,

s t i l l  de noted by x and y ,  such that y — y H . Now (y - RI f ut”

x - v) > 0 for all  v H , therefore , (y - ( X I  -+ a4’)
1v , x - vl “ 0 for all

v ~ H and y ( XI  + O4’)~~ x by the maximal  monotony of ( XI  + a~)~ - So

(~~~) ‘ ( x )  • (~~~ )~~(x) an d X
n 

— R 2
[((4 ’ )~ (x), x) ] ’(

~~ ) k ( x) since ((e ’ ) ~~(X) , x) >

>0 - Therefore (c’~ )~~ satisfies the (P.S) condition at c~ -

c) We claj m th at for each R > 0 , each k c  IN, i/
k \ is bourided as X . 0 .

* * - )  -j  -1We have (
~ )~ a(4 ’ 

~>, 
= (Ow 

~~~ 
=( (a~) )

) 
and I a ~~ (vk, X~ — 

l ( d ~~ ) (v~ ~~)

But (8q,)’ maps bounded sets into bounded sets, so 1
:k. ~

i R 1
1(ø r (v, ~i l

R J ( a~ ) (v~ ~~ ~~~ 
for some C >0 - So ((~ )~ ) (v~ x~ 

~~~. ~~ )~~~) (V ~ 
~~* 2 * *+ (4~ K Vk, X~ 

= (v k K’ “k, x ”k, ~ ~ 
CR - But ((w )

~
) Xe + e~ SO

~ ~ 
CR2 - Therefore Vk , . 

lies in a compact set

c ) f  H - We can extract a subsequence x 1 0 such that V
k, ~ 

— V
k 

and

* n
V

k 
~ 

— 

~k - Since V
k ~~k 

c H D(q, ), by Lemma 2 , we get : I V
k I R •

— 18—
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K
~L (v

k) ~k 
Vk 

and 
~
‘ (v

k ) - u r n  ( ce’ 1 (v
k K 

sup = C
k - ~~ (V , ) -

n ‘ n K > 0

(v
k) V

k
V

k - Again > 0  and even > 0 , otherwise V
k ~ d.i~0), w h i c d

is impossible bj  Assumpt ion  1 an-i the f r e t that  IV k l R . Mor e - , v - - we

kn ow that in! ck 0, so in! ~ ~‘k~ 
0 -

kc JN k t j N

t .  Pro of of Theorem 3

a) For P > 0, let b inf  Q(x ) . aB~ fl D(q~) is not emp t y, otherwisc.
— l x I R

C B~ , which cont rad ic t s  Assumpt ion 3 . Thus 0 < b < ‘ . For \ ‘ 0

let b~ : in ! ~ (x) - 0 <  b~ < bI L  K — —

l xl :R 2
b) Let R > 0. k := if b � 0 and arbitra-y positive if b = 0 - If

0< K <~~:, 
4’

\ I  aB~ satisfies (P. S) at b, as in the proof of Theorem 1. Then
there exists U

~ 
c H, 

~ k > 0 such that I )  Iu ~ l R ii) 4’~
(u K ) ).L U

i i i)  4\ (U~~) b~ .

c) We can apply the same proof as in Theorem 1, to get the existence of a

sequence K i 0 such that U K — u and — > 0 . Observe that we get
_ _  

n n
(u , u - v )  > 0 for all v c D 1O p) = D(4 ’) = P - Since P is a cone , we can choose

v = 2u and we get the same contradiction as earlier which proves the boundedness

of . So i
1 

— u , — ~ and ~~U P since ).L > 0 and U c P - There-
n n n

fore ~-&u c D(w) and we can invoke emma 2 , to get 8~~(u) ~ ~u and ~ (u)

u r n  q, (U ) But p(u) lim (U ) =  sup ~~~~~~~~~~ inf q (v) . Since
K i - 0  n n X 4 - 0  ri ~n K >On r~

I U I  R , p (u) = b and this conc l udes the proof of Theorem 3.

-19-

_________________________ _________________________________________________________________ -



7 ,  P- - ‘  !‘ “r ~r em

Let P -- - T~~~n B
R 

is weak ly  comp .~ct and ~ is w e ak l y  coat i nuou s .

a’ r 1 ’ ex i s t s  u ~ B such that  4 ’(u)  max 4’(v ) . Since B and
R R

~v~~. z R

~‘ r t o ’-cve’~, u I~3~ ‘- r can b~ chosen in aB~ if there Is more than one

ma-- : i m u m .  Si c  ‘e n~ ”~ H. D ci e’) - H - Therefo re for a l l  z t 8B R, 0 q ’(Z)

- ~ i u )  -> ~y . z - u~ , for y d i p (U ) .  If 0 E aq , (u) ,  we are dune. If not , let

R Ry
0 - Then 

~~~ 
z - U) < 0, for all  z aB R - By tak ing  z 

[~~
f ,  

WC’

get R
2
~~~i— ~’- , u) henc e = u  and d e u )  - K u , for some X > 0

—~~ y I  y —

8. An examp ~e

Let a bounded domain with s!nooth boundary . Let ~ C JR x ~

an odd maximal  monotone gra ph with 0 c ~(0) and D(~ ) F . Let J : F — JR

the unique convex function such that ~ Oj and j( 0 )  = 0

Let H = L2
(i~2) and ~ H — L0 ,~” 1 defined by q~(u) := ~ f grad

2
u dx +

f j (u )dx If u W 1, 2 (e) and j( u) c L1(11), +~~ otherw ise.

It is well-known [see for example [811 that p is convex , even , lower

semi continuous . D(Oq ’) = ~~~ 
2~~~ ~ w

2
~ 

2~~~ It {u c L2 (i2) I~~(u) e L2 (~2,) and

&q,( u) = -~~~~ u ~ (u )  . Since the inj ection of wl
~ 
2~~ into L

2
(c2) is compact ,

{u E L2 (f1)I q ,~u) < c }  Is compact in L2 (12) for all C > 0

Clearly D(p) is dense in H . Therefore w satisfie s the hypothesis

of Theorem 1 and for all R > 0, th ere exists infiniteL y many dis t inct  pairs of

solutions -of

-~~u + (~(u) , Ku , f l u l 2 dx R 2 , u *
1
~

2 (~z) It W 2 ’2 (Q) and ~~u) c L2 (~2)

( * )

-20- 
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By a st a n i n r ~ reg u l a r i t y  r e s u l t  u C 1’ a 1 ~~ for a ( ]0 , ii - If p is univa lued

and be l ongs  ~ ~: 1
i~~~. u C

4 ’ 
~~~2 ) and therefore u is a c lass ica l  solution

o~ i~-)  -

C l ’  i r k  ~‘ sa t i s f i e s  the condi t ion lim - I f we assume
u iu — .“

u~ D(Q )
r~~ r i ’~- r~’er th at  0 3 ( 0 ) ,  then 0 - ~~1 0)  - By the Theorem 2 , we get the existence

0’ i n f i n i t e l y  m an y  d i s t i nc t  p airs  of solut ions for ( r : ) sat isfying x2 f i u I 2 d x - -  R2

U ~~l , 2 (~ ) fl W’ ’ 2 (i~) with ~ (u)  ~ L
2 (~2)

As an a p p l i — ation of Theore m 3 , we shal l  give the following lemma.

Lemma 3. Let H a real ordered Hilbert space with a positive cone P satisfy

ing (U . v) > 0 if u , r c  P and such that for all z c P, there exists z~ , z P

with z z - z , (z~ , z )  = 0 - Let w: H — [0 , s~ ] convex satisfying

~(0) 0 ( 1)

{x c H I q , (x)  < c] is compact for c > 0 (2)

(3)

( I + K a 4’)
1 P C  P for all K > 0  . (4)

Then for all P > 0, there exists u c H , K > 0 with

a) u I = R

b) a4’(u) Ku

C) u c  P

-21- 4
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Pr- ~— 1  of Lemma 3

Let ~~ : ~“ l~~ where l~~: H [n , “~ 
is d e f i n e - i  by I~~( u )  = 0 if  u

and - i f  u q P - By P. o p osit i on 4 - .  S of jI], ~ie 
~~ 

an’: D ( c ’) 
~~ 

‘

C l ear l y  ~~ 0 and sa t is f ies  Ass u mpt i on  2 of The orc ’ rn 3 , so for a l l

R > 0, there exis ts  K ~ 0 and tr ~ ~iB~ fl P with ~~u )  in f  ~ ( V I  anci

- — — — — v L R
d4’ (u) \ti . Let w c aI~(u) such that a4’(u) + w ~ Ku - We have

{z H l i z , v -u )  0 for all v P } . We c la im t h a t  i f  z aI ~~~( U )

z - P  and (z.u) 0 Indeed , by as sumption there exists  z and z e P

4- - 4- —such that  z z - z and (z , z ) ~ 0 - Hence for all a- -> 0 we h ave a’ I z

- (z , u )  < 0 - This is possible only if z ‘s- 
= 0 . So z c -P - By taking

v i- u , we get ~~(( - z) , - U )  > 0, hence (z , U)  = 0 - So we h ave u ~ P and

z = -w P such that i) u ~‘ O~ ( u )  ( K’s- l) u + z , ii)  ( u , z )  0 . Let ~~u) z

~~
- 1u 1 2 

+ q’( u) - (K -s- l X u , u) . From i) and It) we get ~(u~ = ~ ( u )  - (a , U )  < Lr ( U )

- (z , u) for all u c H - Since a c P, ~( u )  < ~(u) for all u c P - Since u P

= m i  4,(u) . But In! ~( u )  = Inf ~ (u ) . Indeed , there exists ii E P such
u e P  u c?  u c H 

- -

that ~ u )  < ~(u) for all u c H . Such ü is unique and defined by i = (I + a0~ ~

(K ’s- f l u - By Assumption 4 and since (K + flu c P, ~ c P .  Consequently, by

uniqueness , u =  i~ and u = (I + O4’Y~~(K+l)u or a4’~u )  1-’ Ku . This con-

cludes the proof of Lemma 3.

As another example we cons ider again the equation

(*) - A u  + ~(u) ~ Ku , t u l  z R - u c W 2 ’ 2 fl \~ 1~ 2

-22 -
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We a l r eady  ment ioned tha t  AssumptIon s 1) ,  2 ) ,  3~ of Lemma 3 ar c: s a t i s f i

it i . ~ a s’and ’ird result  tha t  the so lu t ion  of the e qua t i on  U - K A  U K ~~~ f

h~ lon~ s to L2 
if K > 0 and f € L~ - So t n e  lemma can h~ appl ied -an d f’ - - ~ l l

R > 0, i )  possesses -a positive solution , whic ’i is C 1’ ‘~(l~ by a ~t a r  d~’- r

regular i ty  a rgument .  Moreover if ~ Is un ivalued and C1, u C 2 . ~~~~~~~~ ~,

u(x)  > 0 for x e ~ -

- 2 3 -

-
‘ 
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